Strong Convergence Theorems by Hybrid Methods for Maximal Monotone Operators and Generalized Hybrid Mappings

نویسندگان

  • DAVID KUO
  • WATARU TAKAHASHI
چکیده

Let C be a closed convex subset of a real Hilbert space H. Let T be a supper hybrid mapping of C into H, let A be an inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. In this paper, we introduce two iterative sequences by hybrid methods of finding a point of F (T )∩ (A+B)−10, where F (T ) is the set of fixed points of T and (A+B)−10 is the set of zero points of A+B. Then, we prove two strong convergence theorems in a Hilbert space. Using these results, we give some applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...

متن کامل

Hybrid Proximal-Type Algorithms for Generalized Equilibrium Problems, Maximal Monotone Operators, and Relatively Nonexpansive Mappings

The purpose of this paper is to introduce and consider new hybrid proximal-type algorithms for finding a common element of the set EP of solutions of a generalized equilibrium problem, the set F S of fixed points of a relatively nonexpansive mapping S, and the set T−10 of zeros of a maximal monotone operator T in a uniformly smooth and uniformly convex Banach space. Strong convergence theorems ...

متن کامل

Strong Convergence Theorems of Multivalued Nonexpansive Mappings and Maximal Monotone Operators in Banach Spaces

In this paper, we prove a strong convergence theorem for fixed points of sequence for multivalued nonexpansive mappings and a zero of maximal monotone operator in Banach spaces by using the hybrid projection method. Our results modify and improve the recent results in the literatures.

متن کامل

Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces

‎In this paper‎, ‎we prove some theorems related to properties of‎ ‎generalized symmetric hybrid mappings in Banach spaces‎. ‎Using Banach‎ ‎limits‎, ‎we prove a fixed point theorem for symmetric generalized‎ ‎hybrid mappings in Banach spaces‎. ‎Moreover‎, ‎we prove some weak‎ ‎convergence theorems for such mappings by using Ishikawa iteration‎ ‎method in a uniformly convex Banach space.

متن کامل

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015